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Model of Cluster Growth and Phase Separation: 
Exact Results in One Dimension 

V l a d i m i r  P r i v m a n  ~' 2 

Received February 11, 1992 

We present exact results for a lattice model of cluster growth in one dimension. 
The growth mechanism involves interface hopping and pairwise annihilation 
supplemented by spontaneous creation of the stable-phase, + 1, regions by over- 
turning the unstable-phase, - 1, spins with probability p. For cluster coarsening 
at phase coexistence, p = 0, the conventional structure-factor scaling applies. In 
this limit our model falls in the class of diffusion-limited reactions A + A ~ inert. 
The +1 cluster size grows diffusively, ~x/7, and the two-point correlation 
function obeys scaling. However, for p > 0, i.e., for the dynamics of formation of 
stable phase from unstable phase, we find that structure-factor scaling breaks 
down; the length scale associated with the size of the growing + 1 clusters 
reflects only the short-distance properties of the two-point correlations. 

KEY WORDS: Interface diffusion; phase coexistence and growth; cluster 
coarsening; structure-factor scaling. 

1. I N T R O D U C T I O N  

Lattice cellular au tomaton- type  models with a local tendency for ordering, 
termed voter models, can be used to study phase segregation and cluster 
coarsening reminiscent  of spinodal  decomposi t ion,  (1,2) at least in low 
dimensions.  Both the cluster-size scaling (see ref. 3 for review) and  
structure-factor scaling (see ref. 4 for review) at phase separat ion have been 

subjects of numerous  investigations. However,  most  of the available results 
for realistic 2D and  3D dynamica l  models are numerical .  We dist inguish 

between the two "scaling" terms as folows. By cluster-size scaling we mean  
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scaling properties of the cluster-size distribution. The term structure-factor 
scaling is reserved for the scaling properties of the two-point order 
parameter correlation function. The latter is accessible to scattering 
experiments. 

The symmetric voter-type models are related also to the diffusion- 
limited chemical reactions involving particle annihilation, A + A ~ inert 
(see ref. 5 for review). There are several exact results available mostly 
in one dimension which essentially translate to various average and 
asymptotic properties of the cluster size distribution in the phase- 
separation nomenclature. ~5 14) Recent work also yielded exact results for 
the two-point correlations. (13' 14) Results for the chemical reaction models in 
dimension D > 1 are more limited: see ref. 10 and literature cited therein. 
Furthermore, the relation of chemical reaction systems to voter models is 
less straightforward. (1"15-17) 

The purpose of the present work is to introduce a lattice model that 
incorporates voter-type cluster coarsening by interface diffusion in one 
dimension, as well as the process of spontaneous formation of stable-phase 
regions from those of the unstable phase. We derive exact results for the 
two-point correlations. Our main finding is that structure-factor scaling 
ideas cannot be extended from cluster coarsening (of both phases) at 
coexistence to stable-phase cluster growth of f  coexistence. While the 
formulation for general D is outlined, the present study is focused on the 
1D case. 

The model is defined in Section 2. The generating function solution of 
the discrete-time and discrete-space dynamics is presented in Section 3. 
Section 4 is devoted to the discussion of some special limits, including the 
symmetric case. Our results are consistent with previous studies; the 
general framework of our formulation is close to the zero-temperature 
kinetic Ising model studies of 1D chemical reactions/8' 13,14) Detailed results 
are obtained in the appropriately defined continuum limit of the discrete 
dynamics (Section 5). These results are analyzed (Section 6) with emphasis 
on the length scales associated with the two-point correlation function. The 
structure-factor scaling at coexistence and its breakdown off coexistence are 
elucidated. 

2. D E F I N I T I O N  OF T H E  M O D E L  

In this section we define the model in one dimension. We also describe 
the extension to D > 1. However, the emphasis in this work is on the 1D 
case, and the notation is introduced correspondingly. Thus, we consider 
spin variables tr i( t)= _1. Time evolves in unit steps: t = 0 ,  1, 2 ..... It is 
convenient to put the spin variables only at even lattice sites, 
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i =  0, _+ 2, _+ 4 .... for even times t = 0, 2 ..... Similarly, for odd times t = 1, 3 .... 
we put spins at odd lattice sites i =  _+1, _+3 ..... 

The values a~(t + 1) for t + 1 > 0 will be determined stochastically by 
the dynamical rule incorporating interface diffusion and pairwise annihila- 
tion leading to cluster coarsening, and also spontaneous formation of the 
stable, +,  phase from the unstable, - ,  phase, thus attempting to model 
cluster growth in nucleation processes. If the "parent" spins ei l(t) and 
ai+~(t) are both + 1 or both - 1 ,  then the "offspring" is first set to + 1 
or - 1 ,  respectively. However, the - 1  value is then overturned with 
probability p. If the "parent" spin values are opposite, the "offsping" is first 
set to one of them randomly. However, the - 1 value is again overturned 
spontaneously with probability p. 

The first updating step (corresponding to setting p = 0 )  describes a 
symmetric "voter model" type dynamics. (L2'6'12) Indeed, the ordered, all + 
or all - ,  regions are unaltered. However, each interface between the 
neighboring + and - spin pairs hops one lattice spacing to the left or to 
the right with equal probability. On encounter, interfaces annihilate 
pairwise, leading to cluster coarsening. Note that interfaces can be viewed 
as located at the odd sublattice at even times and at the even sublattice at 
odd times. An important property of symmetric voter models and related 
particle (here, interface) diffusion-with-annihilation models is the decoupling 
of the hierarchy of recursion relations for the correlation functions, ~L6) as 
well as the diffusive nature of the resulting equations in the continuum limit, 
which have allowed derivation of several exact results. ~5-'4) 

The second step of updating, i.e., the spontaneous spin flips - 1 ~ + 1, 
is introduced here as the means to break the _ symmetry and model 
formation of the + phase by growth from the - phase. Thus, we will be 
interested in the results for p ~ 1. The key observation (not limited to 
D = 1 ) is that the correlation function hierachy can be set up in such a way 
that decoupling properties reminiscent of the symmetric case are obtained. 

At each lattice site and for each time t > 0 we introduce two random 
variables, (~(t), which takes on values 0 or 1 with equal probability, and 
Og(t), which is 0 with probability 1 - p ,  and 1 with probability p. The 
stochastic dynamics is defined by 

~,(t+ 1)= E1- 0,(t + 1)3{~,(t + 1)G,_,(t)+ E1 - L ( t +  1)] ~,+,(t)} 

+Oi(t+ 1) (2.1) 

Given that all the random variables ~ and 0 are statistically independent, 
one can easily verify that the rule (2.1) correctly incorporates the dynamics 
as described in the preceding paragraphs. 
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In calculating the averages, we can use the properties 0 -2= 1, ~2= ~, 
0 2 = 0 at fixed time and lattice coordinate. Furthermore, ~;(t) = �89 Oi(t) = p, 
where the overbars denoted statistical averages. 

However, we still have to specify the initial values at t = 0. Either the 
values 0-;(0) can be given deterministically or quantities involving the later- 
time values 0-i(t > 0) can be averaged over the distribution of the initial 
conditions. Here we prefer the latter option; we assume that the initial 
values are random and uncorrelated, with G-(0)= #. Thus, - 1  ~< # ~< 1 is 
the initial magnetization: each 0-~(0) takes on values + 1 and - 1  with 
respective probabilities (1 + #)/2 and (1 - #)/2. 

Let us now define the average quantities that will be considered in this 
study. First, due to translational invariance of the initial conditions and of 
the dynamical rule (2.1) after averaging over the random variables, the 
magnetization m(t) = a~(t) depends only on time and satisfies the recursion 
( t~>0)  

m(t + 1 ) = ( 1 - p ) m ( t ) + p  

with 

(2.2) 

m(0) = #  (2.3) 

(2.4) 

Similarly, the two-point correlation function 

G.(t) = 0-,(0 0-,+.(0 

depends only on the distance n = 0, 2, 4 .... between the spins. The recursion 
relation for the two-point function for n > 0 and t > 0 is easily derived from 
(2.1): 

G,( t+  l ) = l ( 1 - p ) 2 [ G ,  2(t)+ 2 G , ( t ) + G , + 2 ( t ) ] +  2 p ( 1 - p ) m ( t ) +  p 2 

(2.5) 

(2.6) 

where the initial and boundary conditions are 

Gn_o(t>~0) = 1 and Gn>o(t = 0 )  = #  2 

The decoupling of the equations for the correlation functions should 
be obvious at this stage. Due to the linearity of (2.1) in 0-, the k-point 
averages at t + 1 are determined by the k, k - 1,...-point averages at time t. 
This property is further amplified for the connected correlation function 
defined by 

C,(t) = G,(t) - mZ(t) (2.7) 
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Indeed, the appropriate recursion is 

Cn(t+l)=�88 (2.8) 

so that the m(t) dependence enters only via the boundary conditions. The 
equivalents of relations (2.6) are 

C~=o(t >~ 0 ) =  1 - mZ(t) and Cn>o(t=O)=O (2.9) 

where we used (2.3). 
The probability to find an interface at i, in the interstice between the 

two spins cri+ 1, is given by 

p(t) = �89 [ I  - G 2 ( t ) ]  = � 8 9  - m 2 ( t ) -  C 2 ( t ) ]  = �89 [ C o ( t )  - C 2 ( t ) ]  (2 .10)  

Similarly to re(t), this quantity is translationally invariant. Both m and p 
can be also considered as the order-parameter and interface-number 
densities if we allow for the fact that they are defined per site of the lattice 
of twice the spacing of the original 1D linear system of sites labeled by i. 
In fact, all our calculations will be with dimensionless variables such as 
distance n and time t. One can of course introduce dimensional length and 
time scales, which has been a common practice especially in the continuum 
limit. However, we found that no new useful physical insight is gained, 
while the equations become more complicated. Thus, we use the dimen- 
sionless variables throughout. 

Before we outline the extension to D > 1, which will be detailed else- 
where, let us emphasize three appealing features of the 1D model: the 
property that only two parent spins "vote" at each time step, the linearity 
of the evolution rule (2.1), and the fact that for p - - 0  there are already 
many results available, in particular, the relation to the interface motion 
and the interpretation of cluster coarsening due to interface annihilation. 

The simplicity of two-spin voting and the linearity of the dynamical 
rule (implying, essentially, solvability) can be extended to D > 1 by using 
the idea of updating along different axes in each time step. (2) Consider 
spins ~/m . iD(t). For  time steps t = 0 - ~  1, D-~D+ 1, 2 D ~ 2 D §  1 ..... the 
rule (2.1) is used along axis l, i.e., with il varied as in (2.1), while i 2 , . . .  , i D 

are kept the same on both sides of the relation. Similarly, for time steps 
1 ~ 2, D § 1 ~ D + 2 ..... the update relation involves the index i2 along axis 
2, and so on. In D time steps, the cycle of the axis indices is complete. 

Regarding the availability of exact results for p = 0 and the interpreta- 
tion of the dynamics of the broken bonds connecting _4- spin pairs, the 
D > 1 results (see ref. 10 and literature cited therein) are understandably less 
numerous than those available for D = 1. In fact, it has been argued (1'15-17) 
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that symmetric voter-model-type dynamics cannot lead to cluster coarsening 
in D = 3 and higher. In D = 2 the cluster do grow, (~'15- 17) but the process can 
no longer be described by a simple cluster-size scaling. (1'2) Quite generally, 
many open questions remain for D > 1. 

3. GENERATING FUNCTION F O R M U L A T I O N  

The recursion relation (2.2) for the magnetization is trivial to solve, 

m( t )=  1 - (1 -/~)(1 _p) t  (3.1) 

However, the solution for the correlation function can be obtained in a 
simple form only in terms of the generating functions 

B,(v) = ~" v'C,(t) (3.2) 
t=O 

Indeed, relations (2.8) yield, for n = 2, 4 ..... 

/) 
Bn='~(1--p)Z(Bn 2+2Bnq-nn+2) ( 3 . 3 )  

while for n = 0 we get 

2(1 - # )  (1 _#)2  
B o ( V ) = l _ ( l _ p ) v  1 - ( 1 - p ) 2 v  (3.4) 

where we used the conditions (2.9) inderiving both (3.3) and (3.4). 
The second-order difference equation (3.3) has two linearly 

independent solutions of the form 

Bn(v) oc b "/2 (3.5) 

where b(v) is a root of the quadratic characteristic equation. However, one 
can check that only one of the two roots yields the solution which 
converges exponentially to zero as n --* oe (for fixed v in the vicinity of 0). 
The other root yields exponentially divergent terms. After some algebra we 
arrive at the expression 

{ { 1 - [1 ~ C P )  5 ~ v -  (1 - p)2v] 1/2 }2] n/2j (3.6) B,(v) Bo(v) 

where n = 2, 4 ..... 
The result (3.6), when expanded in powers of v, yields Cn(t) as the tth 

Taylor series coefficient. However, the expressions thus obtained involve 



Cluster  G r o w t h  and Phase Separation 635 

double sums and are rather unilluminating. The cont inuum limit results 
derived in Section 5 and 6 provide a more  useful source of physical insight 
on the nature of the dynamics. 

Our  main interest presently will be in the expression of the generating 
function for the interface density p(t); see (2.10). This quanti ty is the t th 
Taylor  coefficient of the function 

1EBo(v) - B2(v)] (3.7) 

Explicit calculation yields the result 

p(t)  = 2(1 - #)(1 - p ) '  E1 - S,(1 - p ) ]  - (1 - #)2 (1 - p)2' E 1 - s , (1 ) ]  

where we defined the finite sum 

t (2k)! ~k 
S,(~) 

kA"_ o k! (k + 1 )! 2 2~ + 1 

Note  that 

S~(~)  = [-1 - (1 - ~),/2]/= 

where the t = oe Taylor  series converges for all c~ in [0, 1 ]. 

(3.8) 

(3.9) 

(3.1o) 

4. DIFFUSION AS OPPOSED TO SPIN-FLIP 

It is instructive to consider two models which represent the extremes 
of diffusion only or no diffusion at all, as far as interfacial dynamics is 
concerned. If  we set p = 0 in our  model, the only processes are those of 
interface hopping  and pairwise annihilation. Thus, the model falls in the 
class of the diffusion-limited chemical reactions A + A---r inert, which, as 
well as related models, were studied extensively ~s-14) in one dimension. The 
density of interfaces reduces to 

p(t)= ~, (2k)! (2t + 2)! 
p(O) ~=,+,k!(k+l)!22k-22'+lE(t+l)!]2 (p=O) (4.1) 

where, generally, 

p(0) = (1 - #2)/2 (4.2) 

The density of interfaces decreases monotonica l ly  and smoothly  for 
discrete time steps t = 0 ~ 1 --* 2 ---, . -- .  For  large times, we have 

p(t)  ~- 2p(O)/(ztt) 1/2 (p  = 0) (4.3) 
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where the ~ t 1/2 law is consistent with the previous exact calculations for 
these reactions. 

The other extreme would be to have no diffusion at all. For  this, 
however, we have to modify our model. Thus, let us consider a model of 
_+ 1 spins with the only dynamical process consisting of spin flips - 1 --* + 1 
with probability p. Since the spins are uncorrelated, the model is trivial to 
solve. Indeed, the dynamical equation (2.1) is replaced by 

~ri(t+ 1)=  E 1 - 0 i ( t +  1)] a,(t)+Oi(t+ 1) (4.4) 

where we now assume that the spins are located on the even sublattice at 
all times. 

The magnetization obeys the same equation (2.2), which simply 
reflects the fact that in our more complicated model, diffusion of interfaces 
conserves the order parameter. However, in the new, uncorrelated-spin 
model (USM), all the k-point correlations factorize trivially, and as a result 
the connected correlations vanish identically (for distinct k coordinates). 
Specifically, we get 

pUS M( t )= (1 - -m2) /2= (1 - -# ) (1 - -p )~ - - � 8 9  2~ (4.5) 

C~USM(t) = 6n,oE1 - m2(t)] (4.6) 

The time-dependent length scale of interest in cluster growth is the 
average size of the dominant, + ,  clusters. More generally, one may 
consider the cluster size distribution, which was not obtained analytically. 
(For some asymptotic results in the diffusion-only model see ref. 6.) One 
measure of the cluster size is p-l(t). For the diffusion-only model this 
cluster size measure grows according to ~ x / t  for large times. For  the 
USM, it grows as ~ ( l - p )  ' (assuming 0 < p <  1). 

Note, however, that this quantity is related to the short-distance 
properties of the two-point correlations; see (2.10). The moment or decay- 
tail difinitions of the "correlation" length scales (defined in Section 6) are 
typically used to probe the fixed-time large-distance behavior of the two- 
point correlations in strongly fluctuating systems. The various length scales 
are not necessarily related. For  the diffusive model (symmetric, phase 
coexistence case, p = 0 ) ,  it turns out that all the length scales behave 
according to n ~ ~ (Section 6). The USM example is instructive as the 
opposite extreme: the two-point correlations are zero range; see (4.6). 
However, the cluster size measure p-1  is well defined and diverges as 
t ~ ~ .  The length scale properties will be further explored in Section 6. 
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5. C O N T I N U U M  L I M I T  

The continuum limit has been the standard framework for writing 
phenomenological equations in cases which are not exactly solvable, or 
where the precise microscopic dynamics is not known or specified. In fact, 
the continuum limit description provides a useful guide for the identifica- 
tion of the "universality classes" or at least general classes of models with 
similar properties. A simple-minded continuum limit procedure would 
amount to the assertion that for t > 1 and n > 1 the discrete variation can 
be replaced by smooth functional dependence on t and n. Formally, one 
then uses the expression 

f ( t+A t ,  n+An)={exp()~At~)exp(AAn~---s  (5.1) 

to expand in the derivatives, which are presumably small. The order of the 
expansion is conveniently monitored by collecting powers of 2 and A 
before setting these variables to 1 in the final expressions. 

If we apply this procedure to Eq. (2.2) for re(t) and keep the leading 
t derivative, we obtain the equation 

dm 
- -  = - p r o  + p (5.2) 
dt 

with the solution 

m ( t ) = l - ( 1 - # ) e  p' (5.3) 

where we used (2.3). However, this result differs from the exact expression 
(3.1), which is, in fact, perfectly well defined for all real t~> 0. The source 
of the difficulty is clearly that the t derivatives are small only for p ~ 1. This 
is an illustration of the well-known property that the continuum 
approximation can be used only in a limited part of parameter space. 

A better controlled procedure is to use properly rescaled variables so 
that the parameters 2 and A in the equivalent of (5.1) are actually small. 
For  our problem, we set 

= pt and 2 = p (5.4) 

x = xfP n and A = x ~  (5.5) 

where the t rescaling is suggested by our consideration of m(t), while the 
n rescaling is implied by the diffusive combination n/t 2, which is expected 
to survive the p -~  0 limit. 
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In terms of the new variables, the relation (2.8) for the two-point func- 
tion has the leading terms in order p. The "continuum limit" two-point 
function C(x, z) satisfies the relation obtained by collecting these terms, 

8C 82C 
- - =  - 2 C + - -  (x>0)  (5.6) 
(~T 8X 2 

where the initial and boundary conditions (2.9) are replaced by 

C(x = O, ~ >~ O) = 1 - m2(z) and C(x > O, ~ = O) = 0 

with 

(5.7) 

m(z) = 1 - (1 - #)e - :  (5.8) 

The interface density in the continuum limit is approximated as follows: 

p [ 8C(x,~)] (5.9) 
x ~ - -  c~x x=o 

The reader should keep in mind that the continuum limit is an 
approximation valid asymptotically for 0 4  p ,~ 1, t>> 1, n >> 1. The results 
must be properly interpreted. For instance, if taken literally, relation (5.9) 
would imply that the interface density is infinite at z = 0 because the initial 
conditions for C(x, z) are steplike. In fact, the divergence is in the regime 
where the continuum limit approximation breaks down; see the next 
section. The rescaling (5.4)-(5.5) also obscures the p =0  case. Indeed, the 
results must be properly expressed in terms of the variable x/z2= n/t  2 
before taking the limit p ~ 0. If fact, p = 0 is reminiscent of the "critical- 
point" limit in which there are no small parameters to rescale n and t. 
Instead, only their "scaling combination" enters in the continuum limit. 

The solution of Eq. (5.6) with conditions (5.7) is obtained by the 
Laplace transform method. We omit the mathematical details and only 
quote the final expression, 

F2(l=_~) ( 1 - # )  2 ] 
fo e . . . .  C(x,r)  dz=[_ ~o+1 ~+-~- j exp[ - (~o+2)V2x]  (5.10) 

which inverse-transforms to 

~x--2'~ ) = e  -~ [eX erfc (~-~z~ + x//-~)+e -x erfc (2 5 x /~)  

-- (1 -- #)e-~ erfc ( 2 - ~ z ) l  (5.11) 
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where 
erfc(~) = ~  f ;  e ~2d/~ (5.12) 

is one of the standard error functions, the properties of which are well 
known. Thus, the expression (5.11) can be used to analyze various 
properties of connected two-point correlations. Some such results will be 
presented in the next section. 

6. LENGTH SCALES AND BREAKDOWN OF SCALING 

Let us consider the large-x behavior of C ( x ,  z)  for fixed r > 0  (and 
/~ ~ 1). All three terms in (5.11) then follow the asymptotic large-argument 
behavior of the error function. The results turns out to be 

C ( x ~ oe , r ) oc e - 2 ~ exp -4-zz (6.1) 

where we omitted the proportionality constant. The decay-tail length scale 
ntail is thus determined by the dependence on the diffusional combination 
x2 / z  = n2/t ,  

//tail ~ N ~ -  (6.2) 

Consider next the moment-definition length scales. We define the kth 
moment, 

M k ( z )  = x k C ( x ,  z)  d x  (6.3) 

and the associated time-dependent length nk( t ) ,  

x f p n k  = ( M ~ / M o ) 1 / k  (6.4) 

In the evaluation of Mk, the contribution due to the first term in (5.11) can 
be always used in its large-argument form, while the third term is originally 
a function of the diffusional combination (times e 2~). The second term, 
however, can be written in such a diffusional-scaled form only for 

x >~ a l ~ / z  + a2v (6.5) 

where from now on the coefficient notation aj will be defined to stand for 
"a slowly varying function of r, of order 1, possibly k-dependent (when 
implied by context)." The diffusional contribution to the moments is 

M k  (diff) = a 3 z'(k + 1 )/2 e - 2~ (6.6) 
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In the range of smaller x, not satisfying (6.5), the error function in the 
second term in (5.11) becomes of order 1. In fact, the fixed-x, large-time 
behavior 

C ( x , z - - * ~ ) ~ e  ~ x (6.7) 

is explicit in the Laplace-transformed form (5.10) due to the rightmost pole 
singularity at ~ o = - 1 .  The added contribution due to this exponential 
behavior is of the form 

a l ~ / z  + a2"c 

M ( e x p ) = a 4 e - ~ f  x k e - X d x  (6.8) 
"0 

For small r, the intergation will yield the same power of r as in (6.6). Thus, 
the moment length scales behave according to 

nk~  (75(k+1)/2/~i/Z)l/kp 1/2=N/7 ( t ~  1/p) (6.9) 

However, as ~ increases, the integral in (6.8) saturates at a value of 
order 1. Since the remaining time dependence, e ~, dominates that of the 
diffusive contribution (6.6), the length scales saturate at 

nk~  1/~/-p (t>> 1/p) (6.10) 

The crossover between the limiting behaviors occurs at t ~  lip and is 
difficult to evaluate in closed form. 

We next turn to the density of interfaces and the associated length 
scale. A direct calculation of the right-hand side of (5.9) yields 

p 1 - - , /2  2 
e -2~ + 2(1 - #)e-~ erf(,~f~) (6.11) pl/2 -- (7Z~.)1/2 

where we kept the approximation sign to emphasize that this result applies 
only for t >> 1 (as well as p ~ 1). Note that erf(~)= 1-erfc(c0. The limit 
p = 0  is thus correctly reproduced; see (4.3). For small T, the first term in 
(6.11) dominates, and the associated length scale behaves according to 

np ~ p - i  ~ ~f~ (t ~ 1/p) (6.12) 

However, for large T the second term takes over. Noting that the function 
eft(c0 approaches 1 for large c~, we conclude that 

np~eP'/,v/-p (t>> 1/p) (6.13) 
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In the theories of structure-factor scaling, (4) where the structure factor 
is defined as the spatial Fourier transform of C(n, t), assuming continuous 
coordinate n and time t, the dependence on momentum q is scaled in the 
form ~(t)q. In the direct-space notation this amounts to assuming that the 
coordinate dependence enters via n/~(t). It is tempting to associate h(t) 
with a typical cluster size measure. In practice, h is determined as the 
inverse of some momentum scale found at low or fixed q values, 
corresponding to large or intermediate coordinate values n. 

Our results support this picture at coexistence, i.e., at p =0.  Indeed, 
due to the critical-point-like scaling expressed by the diffusive scaling 
combination n2/t, all length scales defined at short or large distances are 
essentially the same. The identification 1i ~ x~-  is unambiguous. However, 
explicit expressions obtained for p > 0 indicate two difficulties with the 
structure-factor scaling when the growth of the stable phase occurs off 
coexistence. First, the identification of a unique length scale is no longer 
possible for large times for which the cluster size distribution deviates 
significantly from the symmetric case. All three length scales estimated 
behave differently for large t. Second, the two-point correlation function no 
longer has simple scaling properties. In fact, a more general conclusion, 
alluded to in Section 4, is that in such cases the length scale np(t) is the 
appropriate one to use as a typical + cluster size. However, it is charac- 
teristic only of the short-distance coordinate dependence of the two-point 
function. 

In summary, we presented a solvable 1D model of cluster growth. Our 
results indicate that the ideas of structure-factor scaling apply only to 
cluster coarsening at coexistence. Off coexistence, a typical stable-phase 
cluster size measure reflects only the short-distance properties of the two- 
point correlations; the full correlation function no longer obeys scaling. 
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